Ejercicios de Microsoft Excel


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios de Microsoft Excel"

Transcripción

1 Ejercicios de Microsoft Excel 2008 Escuela Politécnica Superior de Zamora Departamento de Informática y Automática Universidad de Salamanca

2 1. Hacer una hoja de cálculo que permita calcular el impuesto sobre la renta, partiendo de los ingresos y los gastos, la fórmula necesaria para ello es Impuesto=(Ingresos- Gastos)*0.25, el porcentaje de impuesto se debe introducir como variable para que se pueda modificar si fuera necesario. 2. Repetir el ejercicio anterior, pero suponiendo que los ingresos y los gastos están dados por trimestres. 3. Repetir el anterior, pero ahora la tasa del impuesto es del 15% si la diferencia entre los Ingresos y los gastos es menor o igual de y del 30% si es mayor. Añadir además una nueva fila con los beneficios trimestrales, que si fueran negativos deben ir en rojo. 4. Hacer una tabla de senos de doble entrada para los ángulos entre 0 y 89, nótese el empleo de referencias mixtas para la fórmula y que los ángulos se miden en radianes. Página 2 de 18

3 5. Hacer una tabla de cuadrados y raíces cuadradas hasta el número que se fije entre 1 y Antonio, Benito y Carlos han decidido compartir una oficina y repartir los gastos que origine en función de su utilización, un 60% Antonio, un 30% Benito y un 10% Carlos. Hacer una hoja de cálculo para repartir mensualmente dichos gastos. 7. Hacer una hoja de cálculo para convertir un número binario de hasta 16 bits a decimal Página 3 de 18

4 8. Hacer una hoja de cálculo para calcular el triángulo de Tartaglia hasta n=10, se recuerda que los números de los extremos son siempre 1 y para obtener el resto hay que sumar el que está encima y encima a la izquierda. 9. Hacer una hoja de cálculo para calcular el máximo común divisor de dos números empleando el algoritmo de Euclides. 10. Hacer una hoja de cálculo para calcular los N primeros términos de una progresión aritmética a partir del primer término A y la diferencia entre los mismos D. Debe calcular también su suma. 11. El problema 3x+1 consiste en lo siguiente, dado un número N, si es 1 se para, si no lo es pero es impar se multiplica por 3 y se le suma 1, en otro caso (es decir si es par) se divide por 2, y se repite con el nuevo número obtenido. No se sabe si, aplicando este algoritmo, todos los números acaban en 1, pero si se ha comprobado que es cierto para los números hasta Hacer una hoja de cálculo que dado N (menor que ), calcule los sucesivos términos hasta llegar al 1. Página 4 de 18

5 12. Dado un polinomio P de grado 4, si se calculan los valores a i =P(i) y se calcula su sucesión de diferencias es decir b n =a n+1 -a n, resulta ser un polinomio de grado 3, si se repite con esta se obtiene un polinomio de grado 2, repitiendo de nuevo un polinomio de grado 1 y repitiendo una vez más se obtiene un polinomio de grado 0, es decir una constante, aprovechar este hecho para calcular los valores de los primeros a i partiendo de los 5 primeros, como se puede observar en la hoja de cálculo siguiente, nótese que los datos introducidos están en negro, el resto son calculados y la fórmula de cálculo depende del color de la fuente. 13. Hacer una hoja de cálculo para multiplicar dos polinomios de grado 3, el ejemplo siguiente sirve para multiplicar 3x 3-2x 2 +5x-1 y x 2 +5x-7, el resultado como se puede observar es: 3x 5 +13x 4-26x 3 +38x 2-40x Dada una función f definida en un intervalo [a,b] y un número par n, se puede calcular la integral aproximada de f en dicho intervalo con la fórmula de Simpson, que es: siendo h=(b-a)/n la longitud del intervalo de integración. Hacer una hoja de cálculo para calcular empleando dicho método la integral de sen(x) entre [0, π/2]. Página 5 de 18

6 15. Hacer una hoja de cálculo para convertir un número decimal menor que a binario empleando 16 bit. 16. Hacer una hoja de cálculo para sumar dos números binarios de 16 bits, las filas 6 y 8 están ocultas. La fila 6 contiene la suma de los dos números de su columna y el acarreo de la anterior y la 8 el acarreo que queda para la siguiente columna. 17. Después de realizado un análisis teórico se ha llegado a la conclusión de que un valor s depende de dos parámetros n y m de acuerdo con la fórmula siguiente: s=n/(1+2(n-1)/f). Siendo f un valor que depende sólo de m y que experimentalmente presenta los siguientes valores: m f 18 30,7 55, ,3 Se desea obtener un gráfico de barras para comparar el valor teórico de s y el obtenido en la práctica, que ha sido el siguiente: m n ,78 1,88 1,89 1,94 1,97 3 2,38 2,71 2,76 2,85 2,92 4 2,96 3,24 3,5 3,62 3,7 El resultado se puede ver en la imagen siguiente: Página 6 de 18

7 18. La sucesión de Fibonacci se define de la siguiente forma: a 1 =1, a 2 =1, a n= a n-1 + a n-2 para n > 2, es decir, los 2 primeros términos son 1 y el resto, cada uno es suma de los dos anteriores. Hacer una tabla que dado n refleje todos los términos de esta sucesión desde a 1 hasta a n, tal y como se muestra en el siguiente ejemplo: 19. Se pide crear una pequeña hoja de Excel donde se pueda desglosar una cantidad dada en Euros en sus diferentes monedas y billetes, de forma que se tenga que utilizar el menor número posible de cada uno de ellos. Página 7 de 18

8 20. Disponemos de una máquina que puede dar vueltas con 8 tipos de monedas distintas: 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02 y Realizar una hoja de cálculo que dados el precio del artículo y la cantidad entregada por el consumidor, coloque en una tabla el número de monedas de cada tipo, empleando el menor número posible, tal y como se muestra en el siguiente ejemplo: 21. Hacer una hoja de cálculo, que calcule áreas de círculos (A=r 2 ) y volúmenes de esferas (V=4r 3 /3) para los valores del radio entre 0 y un máximo prefijado en metros. Hacer la conversión de dichos valores a pulgadas, empleando para ello el factor de conversión 1 in= m, pero permitiendo que sea variable, es decir almacenándolo en una celda de la hoja, como se muestra en la imagen siguiente. 22. Realizar una hoja de cálculo que dado un número N, genere una tabla con los números desde 1 hasta N y su correspondientes factoriales (N!=1 *2*3 * * N), como se representa en la figura. Página 8 de 18

9 23. El algoritmo de la multiplicación rusa sirve para multiplicar dos números enteros positivos: se forman dos columnas y se aplica repetidamente la siguiente regla hasta que el multiplicador valga 1: se divide por dos el multiplicador (sin tener en cuenta el posible resto) y se duplica el correspondiente multiplicando. A continuación, se tachan los números de la columna del multiplicando que correspondan a multiplicadores pares. El producto se obtiene sumando los multiplicandos no tachados. No es necesario que aparezcan las celdas tachadas 24. Dados dos números enteros positivos N y D, se dice que D es un divisor de N si el resto de dividir N entre D es 0. Se dice que un número N es perfecto si la suma de sus divisores (excluido el propio N) es N. Hacer una hoja de cálculo que dado N nos diga si es, o no, perfecto. 25. Calcular la letra del NIF a partir del DNI. Simplemente deberemos dividir el DNI entre 23 y quedarnos con el resto. Seguidamente deberemos mirar en la siguiente tabla para obtener la letra que forma parte del NIF. Página 9 de 18

10 26. Hacer una hoja de cálculo que dado un ángulo x (en B1) y un valor n (en D1) calcule en la fila 3 el seno y el coseno de a=x/2 n, empleando las fórmulas sin(a)=a-a 3 /6 y cos(a)=1-a 2 /2. En la fila 4 debe calcular el seno y el coseno de 2a, con las fórmulas: sin(2a)=2*sin(a)*cos(a) y cos(2a)=cos 2 (a)-sin 2 (a), y repetir con las filas sucesivas hasta obtener el seno y el coseno de x. 27. Hacer una hoja de cálculo que dado un ángulo x (en B1) y un valor n (en D1) calcule en la fila 3 el seno y el coseno hiperbólicos de a=x/2 n, empleando las fórmulas sinh(a)=a+a 3 /6 y cosh(a)=1+a 2 /2. En la fila 4 debe calcular el seno y el coseno hiperbólicos de 2a, con las fórmulas: sinh(2a)=2*sinh(a)*cosh(a) y cosh(2a)=cosh 2 (a)+sinh 2 (a), y repetir con las filas sucesivas hasta obtener el seno y el coseno hiperbólicos de x. Página 10 de 18

11 28. Sobre una muestra ficticia de 140 alumnos de agrícolas, se ha realizado un estudio para ver cuántos alumnos han aprobado cada una de las asignaturas de primer curso durante los últimos tres años. Rellenar los datos de los años 1997, 1998 y Poner también en una celda el número de alumnos matriculados. Calcular la media de aprobados de cada asignatura. La función a utilizar es PROMEDIO. Presentar los valores con formato numérico de dos decimales. Calcular el porcentaje de alumnos aprobados en cada asignatura. Esto lo haremos dividiendo la media de cada una de las asignaturas entre el número total de los alumnos matriculados. Presentar los valores con formato porcentual. Realizar un gráfico de barras con los valores calculados del porcentaje en cada asignatura. Página 11 de 18

12 29. Sobre una muestra ficticia de 160 alumnos de agrícolas, se ha realizado un estudio para ver cuántos alumnos han aprobado cada una de las asignaturas de primer curso durante los últimos tres años. Rellenar los datos de los años 1997, 1998 y Poner también en una celda el número de alumnos matriculados. Calcular la mediana de los aprobados de cada asignatura. La función a utilizar es MEDIANA. Presentar los valores con formato numérico de dos decimales. Calcular el porcentaje de alumnos aprobados en cada asignatura. Esto lo haremos dividiendo la mediana de cada una de las asignaturas entre el número total de los alumnos matriculados. Presentar los valores con formato porcentual. Realizar un gráfico de barras con los valores calculados del porcentaje en cada asignatura. Página 12 de 18

13 30. Una empresa realiza las siguientes ventas (en millones de ptas), en tres categorías diferentes: CARNE, PESCADO y FRUTA. Rellenar los datos de CARNE, PESCADO y FRUTA para cada uno de los trimestres. Calcular el total de cada uno de los trimestres. Calcular el total en EUROS (utilizar una celda auxiliar como en la imagen). Presentar los valores con formato numérico de dos decimales. Calcular el máximo (de entre los valores de CARNE, PESCADO y FRUTA) para cada uno de los trimestres. Utilizar la función MAX de Excel. Realizar un gráfico circular con los porcentajes de ventas anuales para CARNE, PESCADO y FRUTA. Página 13 de 18

14 31. Tres amigos realizan una caza de una semana, obteniendo las piezas que se indican en cada uno de los días. Rellenar los datos para cada uno de ellos de toda la semana. Calcular el total de cada uno. Calcular el dinero total que recaudarán por las piezas capturadas, si cada pieza la cotizan a 17,756. Utilizar una celda auxiliar como en la imagen. Presentar los valores con formato numérico de dos decimales. Calcular el valor más repetido para cada uno de ellos. Utilizar la función MODA de Excel. Realizar un gráfico de barras con las capturas diarias de cada uno de ellos. Página 14 de 18

15 32. Una consecuencia de la definición de cos t y sen t es que los puntos cuyas coordenadas vienen dadas por, para k=0, 1,2 son los vértices de un triángulo equilátero, centrado en el origen, de modo que, para k=0 el vértice es (1,0) y su lado opuesto es vertical. Además, los puntos cuyas coordenadas son, para k=0, 1,2 son los vértices del triángulo rotado un ángulo v alrededor del origen, en el antihorario. Crear una hoja de trabajo que dibuje el primer triángulo superpuesto y el segundo para diferentes valores de v. (Ejercio 1-19) Página 15 de 18

16 33. Dibujar el polígono de vértices: Para diferentes valores de R, a, b y d Página 16 de 18

17 34. Un tiro parabólico es el que se obtiene al componer un movimiento rectilíneo y uniforme, según la horizontal, con otro de elevación, rectilíneo y uniformemente acelerado. Es el caso del lanzamiento de un proyectil con un ángulo de inclinación á y una velocidad inicial V0, en el campo gravitatorio terrestre. La posición del proyectil viene dada por las coordenadas de éste en cada instante, que cumplen las siguientes fórmulas: Siendo el tiempo que tarda dicho proyectil en impactar con el suelo: Realice una hoja de cálculo donde dado el ángulo de inclinación alfa (en grados) y la velocidad de lanzamiento del proyectil, V inicial, calcule la posición de éste en los valores enteros de tiempo antes del momento de impacto con el suelo. Página 17 de 18

18 35. Realizar una hoja de cálculo para calcular la raíz cuadrada de un número dado (C3) entre 1 y 100, con un error menor que un ε > 0 (C4). El procedimiento para hacer el cálculo será el siguiente, en las columnas B y C se pondrán los extremos de un intervalo cerrado que contiene con seguridad la raíz (inicialmente 0 y 10). En la columna D se calculará el punto medio del intervalo anterior y en la E la longitud. Si la longitud es mayor o igual que ε, se debe calcular un nuevo intervalo que contenga al punto medio anterior, y a uno de los extremos, y que sepamos con seguridad que contiene de nuevo la raíz; lo podemos conseguir, por ejemplo, haciendo que el cuadrado del extremo inferior del intervalo sea menos o igual que el número dado, y el cuadrado del extremo superior sea mayor que el número dado. Cuando la longitud del intervalo sea menor que ε, debe concluir el proceso, y poner Raíz cuadrada en la fila correspondiente de la columna A. (Ejercicio 1-50) Página 18 de 18

Ejercicios de Excel. 2. Repetir el ejercicio anterior, pero suponiendo que los ingresos y los gastos están dados por trimestres.

Ejercicios de Excel. 2. Repetir el ejercicio anterior, pero suponiendo que los ingresos y los gastos están dados por trimestres. Ejercicios de Excel 1. Hacer una hoja de cálculo que permita calcular el impuesto sobre la renta, partiendo de los ingresos y los gastos, la fórmula necesaria para ello es Impuesto=(Ingresos-Gastos)*0.25,

Más detalles

5 Operaciones. con polinomios. 1. Polinomios. Suma y resta

5 Operaciones. con polinomios. 1. Polinomios. Suma y resta 5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2015

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2015 Numeración Binaria, Hexadecimal y Octal 1.- Introducción a los números binarios, hexadecimal y octal: El sistema de numeración binario y los códigos digitales son fundamentales en electrónica digital,

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

Operar en línea: a) 12076 5; b) 7083 6; c) 10925 4; d) 74012 7; e) 134235 8; f) 370621 3; g) 560032 9

Operar en línea: a) 12076 5; b) 7083 6; c) 10925 4; d) 74012 7; e) 134235 8; f) 370621 3; g) 560032 9 Naturales 1 Natural 1 Para qué sirven los números naturales? Escribe con símbolos romanos los siguientes números: 1492; 449; 589; 1588; 40090 2 Cuál es el primer número natural? Una persona se fuma un

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

PRÁCTICO: : POLINOMIOS

PRÁCTICO: : POLINOMIOS Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en

Más detalles

MATEMÁTICAS - 6º curso

MATEMÁTICAS - 6º curso MATEMÁTICAS 6º curso TEMA 1. OPERACIONES CON NÚMEROS NATURALES 1. Realizar sumas y restas dadas. 2. Efectuar multiplicaciones dadas. 3. Realizar divisiones dadas. 4. Clasificar las divisiones en exactas

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Actividades de refuerzo

Actividades de refuerzo MATEMÁTICAS 1º SECUNDARIA CUADERNO DE ACTIVIDADES DE REFUERZO Nombre: Curso: Fecha de entrega: 1 Números naturales. Divisibilidad 1. Rodea con una circunferencia los múltiplos de 4, y con un cuadrado los

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

Cuaderno de ejercicios Excel Básico

Cuaderno de ejercicios Excel Básico Cuaderno de ejercicios Excel Básico Introducción Resuelva los siguientes ejercicios siguiendo las indicaciones de su instructor y guardando todos los ejercicios en la misma hoja de cálculo pero en hojas

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho gcorbach@uc.cl Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

11 Cuerpos geométricos

11 Cuerpos geométricos 89485 _ 0369-0418.qxd 1/9/07 15:06 Página 369 Cuerpos geométricos INTRODUCCIÓN Los poliedros, sus elementos y tipos ya son conocidos por los alumnos del curso anterior. Descubrimos y reconocemos de nuevo

Más detalles

4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES.

4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES. 4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.4.1. Áreas de polígonos. El área de un triángulo es Área(ABC) = 1 2 ch = 1 cb sin α 2 Si el triángulo

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS Los números naturales De forma intuitiva podemos definir los números naturales de la siguiente forma: DEFINICIÓN Los números naturales son aquellos

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q

NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q NÚMEROS COMPLEJOS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE El paso de Z a Q Imaginemos que solo se conocieran los números enteros, Z. Sin utilizar otro tipo de números, intenta resolver las siguientes

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto está bien

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

Preparación para las matemáticas del GED (4ta edición Examen del 2002)

Preparación para las matemáticas del GED (4ta edición Examen del 2002) Preparación para las matemáticas del GED (4ta edición Examen del 2002) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de

Más detalles

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:...

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:... TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1 Nombre y Apellido:..................................... C.I.:.................. Grado:......... Sección:........ Puntaje:........... Los dibujos

Más detalles

GUIÓN PEDAGÓGICO DEL TALLER. BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas.

GUIÓN PEDAGÓGICO DEL TALLER. BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas. GUIÓN PEDAGÓGICO DEL TALLER TÍTULO: DIDÁCTICA DE LAS MATEMÁTICAS PARA EDUCACIÓN SECUNDARIA BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas.

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas.

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas. DETERMINANTES página 251 DETERMINANTES 13.1 Un determinante es un arreglo numérico en igual número de filas que de columnas del que, a partir de ciertas reglas, se forma un polinomio. El símbolo es un

Más detalles

TRABAJO: Cocientes obtenidos en una división entre polinomios en los que el grado del dividendo es inferior al grado del divisor

TRABAJO: Cocientes obtenidos en una división entre polinomios en los que el grado del dividendo es inferior al grado del divisor Premios del Departamento de Matemáticas de la Universidad Autónoma de Madrid para Estudiantes de Secundaria Segunda Edición, 2007/2008 TRABAJO: Cocientes obtenidos en una división entre polinomios en los

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Trigonometría, figuras planas

Trigonometría, figuras planas El polígono Un polígono es una figura plana limitada por tres o más segmentos. El perímetro de un polígono es igual a la suma de las longitudes de sus lados. El perímetro de una circunferencia se llama

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles

LECCIÓN 9 5 PROBLEMAS RESUELTOS

LECCIÓN 9 5 PROBLEMAS RESUELTOS LECCIÓN 9 PROBLEMAS RESUELTOS Problema. El largo de un rectángulo mide 8 m y su ancho mide 2 m. Cuál de las siguientes es la mayor longitud de una varilla que cabe exactamente tanto en el largo como en

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

3. POLINOMIOS, ECUACIONES E INECUACIONES

3. POLINOMIOS, ECUACIONES E INECUACIONES 3. POLINOMIOS, ECUACIONES E INECUACIONES 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI Un polinomio con indeterminada x es una expresión de la forma: Los números

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor

Más detalles

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación.

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación. FRACCIONES TEMA 2 INTRODUCCIÓN Para aplicar esta unidad didáctica es conveniente que ya se hayan estudiado las fracciones en clase de forma tradicional, es decir, empleando la pizarra, el papel y el lápiz.

Más detalles

Problemas Tema 3 Enunciados de problemas sobre complejos

Problemas Tema 3 Enunciados de problemas sobre complejos página 1/6 Problemas Tema 3 Enunciados de problemas sobre complejos Hoja 1 1. Dados los complejos: z 1 = 2 + 3i z 2 = 2 - i z 3 = 1 + 4i z 4 = 5 2i Calcula (z 1 + z 2)(z 3 z 4) -28 + 16i 2. Calcula (2

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

Utilización del menú Formato de Celdas

Utilización del menú Formato de Celdas Formatos en Excel La forma en que la información aparece en la hoja de cálculo se puede cambiar si se cambia el tamaño, estilo y color de los datos dentro de esas celdas. El formato predeterminado que

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj. Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.

Más detalles

Copyright 2016 UC Regents and ALEKS Corporation 2/8

Copyright 2016 UC Regents and ALEKS Corporation 2/8 Curso 1 de Matemáticas para Escuela Intermedia Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =

Más detalles

Serie 5. Diseño de programas

Serie 5. Diseño de programas Computación para ingenieros Serie 5. Diseño de programas M.I. Jaime Alfonso Reyes Cortés En las secciones siguientes se presentan una serie de problemas para los cuáles el alumno tendrá que leer cuidadosamente

Más detalles

Primaria Cuarto Grado Matemáticas (con QuickTables)

Primaria Cuarto Grado Matemáticas (con QuickTables) Primaria Cuarto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

ÁNGULOS 1. LOS ÁNGULOS. 1.1. CONCEPTO DE ÁNGULO Y ELEMENTOS.

ÁNGULOS 1. LOS ÁNGULOS. 1.1. CONCEPTO DE ÁNGULO Y ELEMENTOS. ÁNGULOS 1. LOS ÁNGULOS. 1.1. CONCEPTO DE ÁNGULO Y ELEMENTOS. Un ángulo es la región del plano comprendida entre dos semirrectas que tienen un origen común. Sus elementos son: Vértice: es el punto común

Más detalles

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco. Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia

Más detalles

ESTALMAT-Andalucía Actividades 06/07

ESTALMAT-Andalucía Actividades 06/07 ACTIVIDAD 1. NÚMEROS RACIONALES esto? a) Efectúa las divisiones 1/3, 1/5, 1/7, 8/2. Son exactas? Se empiezan a repetir las cifras del cociente en algún momento? Cuándo sucede b) Sin efectuar 15/13, di

Más detalles

EJERCICIOS PARTE I: 1. Cómo se llamaba anteriormente a las hojas de cálculo? 2. Qué es una hoja electrónica de cálculo?

EJERCICIOS PARTE I: 1. Cómo se llamaba anteriormente a las hojas de cálculo? 2. Qué es una hoja electrónica de cálculo? EJERCICIOS PARTE I: 1. Cómo se llamaba anteriormente a las hojas de cálculo? 2. Qué es una hoja electrónica de cálculo? 3. Cómo se identifica una casilla en una hoja de cálculo? 4. Menciona tres ejemplos

Más detalles

La herramienta ArtEM: Aritmética Entera y Modular

La herramienta ArtEM: Aritmética Entera y Modular La herramienta ArtEM: Aritmética Entera y Modular 1. Introducción La herramienta ArtEM (Aritmética Entera y Modular) es una aplicación informática programada en Visual Basic y desarrollada con el fin de

Más detalles

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid 9 de noviembre de 0 PRUE POR EQUIPOS º y º de E.S.O. (45 minutos). ntonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de ntonio y le añade un a la derecha y obtiene un número

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4

1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4 Líneas Rectas Contenido. Línea Recta. Rectas constantes.. Rectas horizontales.............................. Rectas verticales.............................. Rectas con ecuación y = ax.. Rectas con a > 0................................

Más detalles

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 255 EJERCICIOS Construcciones y ejes de simetría 1 a) Halla el ángulo central de un octógono regular. b) Dibuja un octógono regular inscrito en una circunferencia de 5 cm de radio, construyendo

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc

Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc Continuando con el estudio de las funciones trigonométricas, en este artículo voy a explicar las funciones trigonométricas inversas.

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

EJERCICIOS RESUELTOS DEL TEMA 5

EJERCICIOS RESUELTOS DEL TEMA 5 EJERCICIOS RESUELTOS DEL TEMA 5 MULTIPLICACIÓN 1.- Multiplicar los números 27 y -7 utilizando representación binaria en complemento a 2, con el mínimo número posible de bits y empleando el algoritmo apropiado.

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles