Ejercicios de Excel. 2. Repetir el ejercicio anterior, pero suponiendo que los ingresos y los gastos están dados por trimestres.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios de Excel. 2. Repetir el ejercicio anterior, pero suponiendo que los ingresos y los gastos están dados por trimestres."

Transcripción

1 Ejercicios de Excel 1. Hacer una hoja de cálculo que permita calcular el impuesto sobre la renta, partiendo de los ingresos y los gastos, la fórmula necesaria para ello es Impuesto=(Ingresos-Gastos)*0.25, el porcentaje de impuesto se debe introducir como variable para que se pueda modificar si fuera necesario. 2. Repetir el ejercicio anterior, pero suponiendo que los ingresos y los gastos están dados por trimestres. 3. Repetir el anterior, pero ahora la tasa del impuesto es del 15% si la diferencia entre los Ingresos y los gastos es menor o igual de Pts. y del 30% si es mayor. Añadir además una nueva fila con los beneficios trimestrales, que si fueran negativos deben ir en rojo. 4. Hacer una tabla de senos de doble entrada para los ángulos entre 0 y 89, nótese el empleo de referencias mixtas para la fórmula y que los ángulos se miden en radianes. 1

2 5. Hacer una tabla de cuadrados y raíces cuadradas hasta el número que se fije entre 1 y Antonio, Benito y Carlos han decidido compartir una oficina y repartir los gastos que origine en función de su utilización, un 60% Antonio, un 30% Benito y un 10% Carlos. Hacer una hoja de cálculo para repartir mensualmente dichos gastos. 2

3 7. Hacer una hoja de cálculo para convertir un número binario de hasta 16 bits a decimal 8. Hacer una hoja de cálculo para calcular el triángulo de Tartaglia hasta n=10, se recuerda que los números de los extremos son siempre 1 y para obtener el resto hay que sumar el que esta encima y encima a la izquierda. 9. Hacer una hoja de cálculo para calcular el máximo común divisor de dos números empleando el algoritmo de Euclides. 10. Hacer una hoja de cálculo para calcular los N primeros términos de una progresión aritmética a partir del primer término A y la diferencia entre los mismos D. Debe calcular también su suma. 11. El problema 3x+1 consiste en lo siguiente, dado un número N, si es 1 se para, si no lo es pero es impar se multiplica por 3 y se le suma 1, en otro caso (es decir si es par) se divide por 2, y se repite con el nuevo número obtenido. No se sabe si, aplicando este algoritmo, todos los números acaban en 1, pero si se ha comprobado que es cierto para los números hasta Hacer una hoja de cálculo que dado N (menor que ), calcule los sucesivos términos hasta llegar al 1. 3

4 12. Dado un polinomio P de grado 4, si se calculan los valores a i =P(i) y se calcula su sucesión de diferencias es decir b n =a n+1 -a n, resulta ser un polinomio de grado 3, si se repite con esta se obtiene un polinomio de grado 2, repitiendo de nuevo un polinomio de grado 1 y repitiendo una vez más se obtiene un polinomio de grado 0, es decir una constante, aprovechar este hecho para calcular los valores de los primeros a i partiendo de los 5 primeros, como se puede observar en la hoja de cálculo siguiente, nótese que los datos introducidos están en negro, el resto son calculados y la fórmula de cálculo depende del color de la fuente. 13. Hacer una hoja de cálculo para multiplicar dos polinomios de grado 3, el ejemplo siguiente sirve para multiplicar 3x 3-2x 2 +5x-1 y x 2 +5x-7, el resultado como se puede observar es: 3x 5 +13x 4-26x 3 +38x 2-40x Dada una función f definida en un intervalo [a,b] y un número par n, se puede calcular la integral aproximada de f en dicho intervalo con la fórmula de Simpson, que es h*(f(a)+4*f(a+h)+2*f(a+2*h)+...+f(a+n*h))/3, siendo h=(b-a)/n la longitud del intervalo de integración. Hacer una hoja de cálculo para calcular empleando dicho método la integral de sen(x). 4

5 15. Hacer una hoja de cálculo para convertir un número decimal menor que a binario empleando 16 bit. 16. Hacer una hoja de cálculo para sumar dos números binarios de 16 bits, las filas 6 y 8 están ocultas. La fila 6 contiene la suma de los dos números de su columna y el acarreo de la anterior y la 8 el acarreo que queda para la siguiente columna. 17. Después de realizado un análisis teórico se ha llegado a la conclusión de que un valor s depende de dos parámetros n y m de acuerdo con la fórmula siguiente: s=n/(1+2(n-1)/f). Siendo f un valor que depende sólo de m y que experimentalmente presenta los siguientes valores: m f 18 30,7 55, ,3 Se desea obtener un gráfico de barras para comparar el valor teórico de s y el obtenido en la práctica, que ha sido el siguiente: m n ,78 1,88 1,89 1,94 1,97 3 2,38 2,71 2,76 2,85 2,92 4 2,96 3,24 3,5 3,62 3,7 El resultado se puede ver en la imagen siguiente: 5

6 18. La sucesión de Fibonacci se define de la siguiente forma: a 1 =1, a 2 =1, a n =a n- 1 + a n-2 para n > 2, es decir, los 2 primeros términos son 1 y el resto, cada uno es suma de los dos anteriores. Hacer una tabla que dado n refleje todos los términos de esta sucesión desde a 1 hasta a n, tal y como se muestra en el siguiente ejemplo: 19. Disponemos de una máquina que puede dar vueltas con 5 tipos de monedas distintas: 100, 50, 25, 5 y 1 Pts. Realizar una hoja de cálculo que dados el precio del artículo y la cantidad entregada por el consumidor, coloque en una tabla el número de monedas de cada tipo, empleando el menor número posible, tal y como se muestra en el siguiente ejemplo: 20. Hacer una hoja de cálculo, que calcule áreas de círculos (A=πr 2 ) y volúmenes de esferas (V=4πr 3 /3) para los valores del radio entre 0 y un máximo prefijado en metros. Hacer la conversión de dichos valores a pulgadas, empleando para ello el factor de conversión 1 in= m, pero permitiendo que sea variable, es decir almacenándolo en una celda de la hoja, como se muestra en la imagen siguiente. 6

7 21. Realizar una hoja de cálculo que dado un número N, genere una tabla con los números desde 1 hasta N y su correspondientes factoriales (N!=1*2*3* * N), como se representa en la figura. 22. El algoritmo de la multiplicación rusa sirve para multiplicar dos números enteros positivos: se forman dos columnas y se aplica repetidamente la siguiente regla hasta que el multiplicador valga 1: se divide por dos el multiplicador (sin tener en cuenta el posible resto) y se duplica el correspondiente multiplicando. A continuación, se tachan los números de la columna del multiplicando que correspondan a multiplicadores pares. El producto se obtiene sumando los multiplicandos no tachados. No es necesario que aparezcan las celdas tachadas 23. Dados dos números enteros positivos N y D, se dice que D es un divisor de N si el resto de dividir N entre D es 0. Se dice que un número N es perfecto si la suma de sus divisores (excluido el propio N) es N. Hacer una hoja de cálculo que dado N nos diga si es, o no, perfecto. 7

8 24. Hacer una hoja de cálculo que dado un ángulo x (en B1) y un valor n (en D1) calcule en la fila 3 el seno y el coseno de a=x/2 n, empleando las fórmulas sin(a)=a-a 3 /6 y cos(a)=1-a 2 /2. En la fila 4 debe calcular el seno y el coseno de 2a, con las fórmulas: sin(2a)=2*sin(a)*cos(a) y cos(2a)=cos 2 (a)-sin 2 (a), y repetir con las filas sucesivas hasta obtener el seno y el coseno de x. 25. Hacer una hoja de cálculo que dado un ángulo x (en B1) y un valor n (en D1) calcule en la fila 3 el seno y el coseno hiperbólicos de a=x/2 n, empleando las fórmulas sinh(a)=a+a 3 /6 y cosh(a)=1+a 2 /2. En la fila 4 debe calcular el seno y el coseno hiperbólicos de 2a, con las fórmulas: sinh(2a)=2*sinh(a)*cosh(a) y cosh(2a)=cosh 2 (a)+sinh 2 (a), y repetir con las filas sucesivas hasta obtener el seno y el coseno hiperbólicos de x. 26. Sobre una muestra ficticia de 140 alumnos de agrícolas, se ha realizado un estudio para ver cuantos alumnos han aprobado cada una de las asignaturas de primer curso durante los últimos tres años. Rellenar los datos de los años 1997, 1998 y Poner también en una celda el número de alumnos matriculados. Calcular la media de aprobados de cada asignatura. La función a utilizar es PROMEDIO. Presentar los valores con formato numérico de dos decimales. 8

9 Calcular el porcentaje de alumnos aprobados en cada asignatura. Esto lo haremos dividiendo la media de cada una de las asignaturas entre el número total de los alumnos matriculados. Presentar los valores con formato porcentual. Realizar un gráfico de barras con los valores calculados del porcentaje en cada asignatura. 27. Sobre una muestra ficticia de 160 alumnos de agrícolas, se ha realizado un estudio para ver cuantos alumnos han aprobado cada una de las asignaturas de primer curso durante los últimos tres años. Rellenar los datos de los años 1997, 1998 y Poner también en una celda el número de alumnos matriculados. Calcular la mediana de los aprobados de cada asignatura. La función a utilizar es MEDIANA. Presentar los valores con formato numérico de dos decimales. Calcular el porcentaje de alumnos aprobados en cada asignatura. Esto lo haremos dividiendo la mediana de cada una de las asignaturas entre el número total de los alumnos matriculados. Presentar los valores con formato porcentual. 9

10 Realizar un gráfico de barras con los valores calculados del porcentaje en cada asignatura. 28. Una empresa realiza las siguientes ventas (en millones de ptas), en tres categorías diferentes: CARNE, PESCADO y FRUTA. Rellenar los datos de CARNE, PESCADO y FRUTA para cada uno de los trimestres. Calcular el total de cada uno de los trimestres. Calcular el total en EUROS (utilizar una celda auxiliar como en la imagen). Presentar los valores con formato numérico de dos decimales. Calcular el máximo (de entre los valores de CARNE, PESCADO y FRUTA) para cada uno de los trimestres. Utilizar la función MAX de Excel. Realizar un gráfico circular con los porcentajes de ventas anuales para CARNE, PESCADO y FRUTA. 10

11 29. Tres amigos realizan una caza de una semana, obteniendo las piezas que se indican en cada uno de los días. Rellenar los datos para cada uno de ellos de toda la semana. Calcular el total de cada uno. Calcular el dinero total que recaudarán por las piezas capturadas, si cada pieza la cotizan a 17,756. Utilizar una celda auxiliar como en la imagen. Presentar los valores con formato numérico de dos decimales. Calcular el valor más repetido para cada uno de ellos. Utilizar la función MODA de Excel. Realizar un gráfico de barras con las capturas diarias de cada uno de ellos. 11

12 12

Ejercicios de Microsoft Excel

Ejercicios de Microsoft Excel Ejercicios de Microsoft Excel 2008 Escuela Politécnica Superior de Zamora Departamento de Informática y Automática Universidad de Salamanca 1. Hacer una hoja de cálculo que permita calcular el impuesto

Más detalles

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2015

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2015 Numeración Binaria, Hexadecimal y Octal 1.- Introducción a los números binarios, hexadecimal y octal: El sistema de numeración binario y los códigos digitales son fundamentales en electrónica digital,

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Cuaderno de ejercicios Excel Básico

Cuaderno de ejercicios Excel Básico Cuaderno de ejercicios Excel Básico Introducción Resuelva los siguientes ejercicios siguiendo las indicaciones de su instructor y guardando todos los ejercicios en la misma hoja de cálculo pero en hojas

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc

Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc Continuando con el estudio de las funciones trigonométricas, en este artículo voy a explicar las funciones trigonométricas inversas.

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:

Más detalles

PRÁCTICO: : POLINOMIOS

PRÁCTICO: : POLINOMIOS Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en

Más detalles

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS Los números naturales De forma intuitiva podemos definir los números naturales de la siguiente forma: DEFINICIÓN Los números naturales son aquellos

Más detalles

5 Operaciones. con polinomios. 1. Polinomios. Suma y resta

5 Operaciones. con polinomios. 1. Polinomios. Suma y resta 5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma

Más detalles

LECCIÓN 9 5 PROBLEMAS RESUELTOS

LECCIÓN 9 5 PROBLEMAS RESUELTOS LECCIÓN 9 PROBLEMAS RESUELTOS Problema. El largo de un rectángulo mide 8 m y su ancho mide 2 m. Cuál de las siguientes es la mayor longitud de una varilla que cabe exactamente tanto en el largo como en

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

Introducción al análisis numérico

Introducción al análisis numérico Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 26 Contenidos: 1 Sistemas

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES.

4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES. 4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.4.1. Áreas de polígonos. El área de un triángulo es Área(ABC) = 1 2 ch = 1 cb sin α 2 Si el triángulo

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

Problemas de Recursividad

Problemas de Recursividad Problemas de Recursividad Problema 1. El factorial de un número entero n 0, denotado como n!, se define! como!!! i = 1 2 n cuando n > 0, y 0! = 1. Por ejemplo 6! = 1 2 3 4 5 6 = 720 Diseñad una método

Más detalles

TRABAJO: Cocientes obtenidos en una división entre polinomios en los que el grado del dividendo es inferior al grado del divisor

TRABAJO: Cocientes obtenidos en una división entre polinomios en los que el grado del dividendo es inferior al grado del divisor Premios del Departamento de Matemáticas de la Universidad Autónoma de Madrid para Estudiantes de Secundaria Segunda Edición, 2007/2008 TRABAJO: Cocientes obtenidos en una división entre polinomios en los

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

Utiliza los números ordinales al resolver problemas planteados de manera oral.

Utiliza los números ordinales al resolver problemas planteados de manera oral. T G CONTENIDOS APRENDIZAJES ESPERADOS ESTÁNDARES 1.2.1 Identificación y uso de los números ordinales para colocar objetos o para indicar el lugar que ocupan dentro de una colección de hasta 10 elementos.

Más detalles

Título: Cuadrados Latinos SMORERA Autor : Luis R. Morera González 0. RESUMEN

Título: Cuadrados Latinos SMORERA Autor : Luis R. Morera González 0. RESUMEN Título: Cuadrados Latinos SMORERA Autor : Luis R. Morera González 0. RESUMEN Los cuadrados latinos SMORERA son matrices de ocho filas por ocho columnas, donde la suma de las celdas de cualquier fila ó

Más detalles

MATEMÁTICAS - 6º curso

MATEMÁTICAS - 6º curso MATEMÁTICAS 6º curso TEMA 1. OPERACIONES CON NÚMEROS NATURALES 1. Realizar sumas y restas dadas. 2. Efectuar multiplicaciones dadas. 3. Realizar divisiones dadas. 4. Clasificar las divisiones en exactas

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Práctica 3. CÁLCULO DE LA FUNCIÓN SENO UTILIZANDO UN DESARROLLO EN SERIE

Práctica 3. CÁLCULO DE LA FUNCIÓN SENO UTILIZANDO UN DESARROLLO EN SERIE PROGRAMACIÓN (EUI). Curso 2001-2002 Práctica 3. CÁLCULO DE LA FUNCIÓN SENO UTILIZANDO UN DESARROLLO EN SERIE F. Marqués y N. Prieto Índice General 1 Introducción 1 2 El problema 1 2.1 Desarrollo en serie

Más detalles

Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc

Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc Gráfico de las Funciones Trigonométricas Inversas con OpenOffice.org Calc Continuando con el estudio de las funciones trigonométricas, en este artículo voy a explicar las funciones trigonométricas inversas.

Más detalles

LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS

LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS LA UNIDAD ARITMÉTICA Y LÓGICA LECCIÓN 1. CIRCUITOS ARITMÉTICOS DE SUMA Y RESTA DE ENTEROS Departamento de Informática. Curso 2006-2007 1 EL SEMISUMADOR BINARIO S = ab + ba = a b C = ab Departamento de

Más detalles

3. POLINOMIOS, ECUACIONES E INECUACIONES

3. POLINOMIOS, ECUACIONES E INECUACIONES 3. POLINOMIOS, ECUACIONES E INECUACIONES 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI Un polinomio con indeterminada x es una expresión de la forma: Los números

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Demostración de la Transformada de Laplace

Demostración de la Transformada de Laplace Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada

Más detalles

Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas

Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Definición(1) Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:...

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:... TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1 Nombre y Apellido:..................................... C.I.:.................. Grado:......... Sección:........ Puntaje:........... Los dibujos

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

Preparación para las matemáticas del GED (4ta edición Examen del 2002)

Preparación para las matemáticas del GED (4ta edición Examen del 2002) Preparación para las matemáticas del GED (4ta edición Examen del 2002) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Operar en línea: a) 12076 5; b) 7083 6; c) 10925 4; d) 74012 7; e) 134235 8; f) 370621 3; g) 560032 9

Operar en línea: a) 12076 5; b) 7083 6; c) 10925 4; d) 74012 7; e) 134235 8; f) 370621 3; g) 560032 9 Naturales 1 Natural 1 Para qué sirven los números naturales? Escribe con símbolos romanos los siguientes números: 1492; 449; 589; 1588; 40090 2 Cuál es el primer número natural? Una persona se fuma un

Más detalles

La herramienta ArtEM: Aritmética Entera y Modular

La herramienta ArtEM: Aritmética Entera y Modular La herramienta ArtEM: Aritmética Entera y Modular 1. Introducción La herramienta ArtEM (Aritmética Entera y Modular) es una aplicación informática programada en Visual Basic y desarrollada con el fin de

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

Primaria Cuarto Grado Matemáticas (con QuickTables)

Primaria Cuarto Grado Matemáticas (con QuickTables) Primaria Cuarto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Convertir unidades de longitud Determinar el perímetro de triángulo y cuadrilátero Determinar el volumen de prismas rectos.

Convertir unidades de longitud Determinar el perímetro de triángulo y cuadrilátero Determinar el volumen de prismas rectos. Colegio Preuniversitario Dr. Luis Alfredo Duvergé Mejía Listado de contenidos en matemática a estudiar para ingresar al 6to Grado Nivel Básico. Números y operaciones. Leer y escribe los números de mayores

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Unidad 1. Números naturales

Unidad 1. Números naturales Unidad 1. Números naturales Matemáticas Múltiplo 1.º ESO / Resumen Unidad 1 NÚMEROS NATURALES USOS QUE TIENEN CÓMO SE EXPRESAN OPERACIONES Contar Ordenar Medir Codificar... Sistema de numeración decimal

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

Recordar las principales operaciones con expresiones algebraicas.

Recordar las principales operaciones con expresiones algebraicas. Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números

Más detalles

El interés y el dinero

El interés y el dinero El interés y el dinero El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco,

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

TALLER DE MATEMÁTICAS EDUCACIÓN SECUNDARIA OBLIGATORIA

TALLER DE MATEMÁTICAS EDUCACIÓN SECUNDARIA OBLIGATORIA TALLER DE MATEMÁTICAS EDUCACIÓN SECUNDARIA OBLIGATORIA CONTENIDOS TALLER DE MATEMÁTICAS 2º ESO PRIMER TRIMESTRE números enteros (12) Operaciones combinadas: jerarquía y paréntesis Lectura, escritura, representación

Más detalles

CLASE Nº7. Patrones, series y regularidades numéricas

CLASE Nº7. Patrones, series y regularidades numéricas CLASE Nº7 Patrones, series y regularidades numéricas Patrón numérico en la naturaleza Regularidades numéricas Patrones Espiral con triángulos rectángulos Series numéricas REGULARIDADES NUMÉRICAS Son series

Más detalles

ESTALMAT-Andalucía Actividades 06/07

ESTALMAT-Andalucía Actividades 06/07 ACTIVIDAD 1. NÚMEROS RACIONALES esto? a) Efectúa las divisiones 1/3, 1/5, 1/7, 8/2. Son exactas? Se empiezan a repetir las cifras del cociente en algún momento? Cuándo sucede b) Sin efectuar 15/13, di

Más detalles

MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES

MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES OBJETIVOS Concepto de número mixto. Identificar gráficamente fracciones equivalentes y comprobar si dos fracciones son equivalentes. Obtener fracciones equivalentes

Más detalles

+18 = 00010010-18 = 10010010

+18 = 00010010-18 = 10010010 Capítulo 8. Aritmética del Procesador Las dos preocupaciones principales de la aritmética de una computadora son la manera en que se representan los números (el formato binario) y los algoritmos utilizados

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho gcorbach@uc.cl Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto

Más detalles

EJERCICIOS RESUELTOS DEL TEMA 5

EJERCICIOS RESUELTOS DEL TEMA 5 EJERCICIOS RESUELTOS DEL TEMA 5 MULTIPLICACIÓN 1.- Multiplicar los números 27 y -7 utilizando representación binaria en complemento a 2, con el mínimo número posible de bits y empleando el algoritmo apropiado.

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

Utilización del menú Formato de Celdas

Utilización del menú Formato de Celdas Formatos en Excel La forma en que la información aparece en la hoja de cálculo se puede cambiar si se cambia el tamaño, estilo y color de los datos dentro de esas celdas. El formato predeterminado que

Más detalles

Copyright 2016 UC Regents and ALEKS Corporation 2/8

Copyright 2016 UC Regents and ALEKS Corporation 2/8 Curso 1 de Matemáticas para Escuela Intermedia Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

EJERCICIOS RESUELTOS DE MATRICES

EJERCICIOS RESUELTOS DE MATRICES EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B - 3 + 0 - b) AC - 3 3 - +0 -+ 3+ +(-) 0 7 0.+(-).3+(-)(-).+(-)

Más detalles

Serie 5. Diseño de programas

Serie 5. Diseño de programas Computación para ingenieros Serie 5. Diseño de programas M.I. Jaime Alfonso Reyes Cortés En las secciones siguientes se presentan una serie de problemas para los cuáles el alumno tendrá que leer cuidadosamente

Más detalles

PRACTICAS DE OPENOFFICE CALC Práctica 1

PRACTICAS DE OPENOFFICE CALC Práctica 1 PRACTICAS DE OPENOFFICE CALC Práctica 1 Objetivo: Conocer las operaciones básicas: suma, resta, multiplicación, división, raíz, potencia. 1. En un nuevo libro de Calc, coloca en la columna A y B las cantidades

Más detalles

Sucesiones. Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro.

Sucesiones. Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. Sucesiones Concepto de sucesión Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra Expresiones algebraicas y ecuaciones Melilla Qué es una expresión algebraica? Los padres de Iván le han encargado que vaya al mercado a comprar 4 kg de naranjas y 5 kg de manzanas. Pero no saben lo que

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el

Más detalles

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia BACHILLERATO CO+ 0.- Pedro anduvo una determinada distancia a velocidad constante. Si hubiera ido 0,5 km/h más rápido, habría recorrido la misma distancia en 5 4 del tiempo original, pero si hubiera ido

Más detalles

Datos de tipo cuantitativo

Datos de tipo cuantitativo Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: medidas de tipo paramétrico Documento Datos de tipo cuantitativo Son aquellos que están representados por números.

Más detalles

Puertas lógicas NAND, NOR y OR exclusiva Práctica # 10

Puertas lógicas NAND, NOR y OR exclusiva Práctica # 10 Objetivos Puertas lógicas NAND, NOR y OR exclusiva Práctica # 10 Estudiar la operación y uso de las compuertas NAND y NOR Investigar la relación entre las entradas y las salidas de la puerta OR exclusiva

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 2do Grado

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 2do Grado 2.N.1.1 2.N.1.2 2.N.1.3 Numeración y Operación 1.0 Reconoce la relación entre los números cardinales hasta, las cantidades que estos representan y el valor posicional de sus dígitos. Cuenta, ordena, lee

Más detalles

GUIÓN PEDAGÓGICO DEL TALLER. BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas.

GUIÓN PEDAGÓGICO DEL TALLER. BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas. GUIÓN PEDAGÓGICO DEL TALLER TÍTULO: DIDÁCTICA DE LAS MATEMÁTICAS PARA EDUCACIÓN SECUNDARIA BREVE DESCRIPCIÓN: Con este taller se pretende dar herramientas a los docentes para la enseñanza de las matemáticas.

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

EJERCICIOS EXCEL. Guardar el libro en tu pen drive, con el nombre PRACTICA1_ALUMNO_GRUPO.

EJERCICIOS EXCEL. Guardar el libro en tu pen drive, con el nombre PRACTICA1_ALUMNO_GRUPO. EJERCICIOS EXCEL EJERCICIO DEL PRECIO CON IVA Crear un libro para saber cuál es el precio de un artículo aplicándole el 16% de IVA. El precio sin IVA es un valor que se tendrá que introducir, así como

Más detalles

Actividades de refuerzo

Actividades de refuerzo MATEMÁTICAS 1º SECUNDARIA CUADERNO DE ACTIVIDADES DE REFUERZO Nombre: Curso: Fecha de entrega: 1 Números naturales. Divisibilidad 1. Rodea con una circunferencia los múltiplos de 4, y con un cuadrado los

Más detalles